Ministry of Science Research and Technology



**DANESHPAJOOHAN PISHRO** Higher Education Institute

2018

## Materials Engineering –B.S.



DANESHPAJOOHAN PISHRO HIGHER EDUCATION INSTITUTE

- COURSE CHART
- SYLLABUS
- SEMESTER CHART



#### **Mathematics-I**

| Course Code | Course Title  | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|---------------|---------|-------------|-----------|---------------|--------------|
| 51-11-019   | Mathematics-I | 3       | 3           | 0         |               |              |

Calculus I, consisted principally of one-variable Calculus, Functions, Derivative, Integrals, Integration Methods, Complex Numbers and Infinite Series.

#### **Mathematics-II**

| Course Code | Course Title   | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|----------------|---------|-------------|-----------|---------------|--------------|
| 51-11-021   | Mathematics-II | 3       | 3           | 0         | Mathematics-I |              |

The main scope of this course is to teach the students some topics in Introductory Linear Algebra including Matrix Algebra and Linear Transformations and Multivariable Calculus including Multivariable Functions, Directional and Partial Derivatives, Velocity and Acceleration, Tangent Plane and Normal Gradient Line, Cylindrical and Spherical Coordinates, Vector Field and Line Integrals, Surface Integral, Green's Theorem, Divergence Theorem and Stoke's Theorem.

#### **Differential Equations**

| <b>Course Code</b> | Course Title           | Credits | Theoretical | Practical | Pre-requisite | Simultaneous   |
|--------------------|------------------------|---------|-------------|-----------|---------------|----------------|
| 51-11-022          | Differential Equations | 3       | 3           | 0         |               | Mathematics-II |

The main reason for solving many differential equations is to try to learn something about an underlying physical process that the equation is believed to model. Gaining an understanding of a complex natural process is usually accomplished by combining or building upon simpler and more basic models. Thus a thorough knowledge of these models, the equations that describe them and their solutions, is the first and indispensable step toward the solution of more complex and realistic problems. Topics covered in this course:

Introduction to Differential Equations; First Order Differential Equations; Second Order Linear Equations; Higher Order Linear Equations; Series Solutions of Second Order Linear Equations; The Laplace Transform; Systems of First Order Linear Equations.

#### **Engineering Mathematics**

| Course Code | Course Title            | Credits | Theoretical | Practical | Pre-requisite          | Simultaneous |
|-------------|-------------------------|---------|-------------|-----------|------------------------|--------------|
| 51-11-046   | Engineering Mathematics | 3       | 3           | 0         | Differential Equations |              |

Engineering mathematics is a branch of applied mathematics that concerns itself with mathematical methods and techniques that are typically used in engineering and industry. Engineering mathematics consists principally of Fourier analysis, Partial differential equations, Complex analysis, Integral transforms and Calculus of variations. Topics covered in this course:

Fourier series, Integrals and The Fourier Transform; Partial Differential Equations; Complex Analysis; Calculus of Variations.

### Materials Engineering Undergraduate Course Chart

|                    | General Courses                 |         |                          |                          |                                                  |                          |
|--------------------|---------------------------------|---------|--------------------------|--------------------------|--------------------------------------------------|--------------------------|
| <b>Course Code</b> | Course Title                    | Credits | Theoretical              | Practical                | Pre-requisite                                    | Simultaneous             |
| 61-11-004          | Islamic Thoughts-I              | 2       | 2                        | 0                        |                                                  |                          |
| 61-11-011          | Islamic Thoughts-II             | 2       | 2                        | 0                        | Islamic Thoughts-I                               |                          |
| 61-11-003          | Rite of Life (Applied Ethics)   | 2       | 2                        | 0                        |                                                  |                          |
| 61-11-012          | Islamic Revolution of Iran      | 2       | 2                        | 0                        |                                                  |                          |
| 61-11-014          | Analytical History of Islam     | 2       | 2                        | 0                        |                                                  |                          |
| 61-15-001          | Persian Language                | 3       | 3                        | 0                        |                                                  |                          |
| 61-15-002          | English Language                | 3       | 3                        | 0                        |                                                  |                          |
| 61-15-005          | Physical Education              | 1       | 0.5                      | 0.5                      |                                                  |                          |
| 61-15-011          | Exercise-I                      | 1       | 0                        | 1                        | Physical Education                               |                          |
| 61-15-007          | Family and Population Knowledge | 2       | 2                        | 0                        |                                                  |                          |
| 61-11-008          | Introduction to Constitution    | 2       | 2                        | 0                        |                                                  |                          |
| 61-11-013          | The Holy Quran Exegesis         | 2       | 2                        | 0                        |                                                  |                          |
|                    | Total Credits                   | 22      | Note1: Or<br>Constitutio | nly one c<br>on' shall b | ourse between 'Islamic Revolution of Ir e taken. | an' and 'Introduction to |

|                    | Science Courses         |         |             |           |                        |                |
|--------------------|-------------------------|---------|-------------|-----------|------------------------|----------------|
| <b>Course Code</b> | Course Title            | Credits | Theoretical | Practical | Pre-requisite          | Simultaneous   |
| 51-11-019          | Mathematics-I           | 3       | 3           | 0         |                        |                |
| 51-11-021          | Mathematics-II          | 3       | 3           | 0         | Mathematics-I          |                |
| 51-11-022          | Differential Equations  | 3       | 3           | 0         |                        | Mathematics-II |
| 51-11-046          | Engineering Mathematics | 3       | 3           | 0         | Differential Equations |                |
| 51-11-049          | Computer Programming    | 3       | 3           | 0         | Mathematics-I          |                |
| 51-11-023          | Numerical Methods       | 2       | 2           | 0         | Computer Programming   |                |
| 51-22-030          | Physics-I               | 3       | 3           | 0         |                        |                |
| 51-22-031          | Physics-II              | 3       | 3           | 0         | Physics-I              |                |
| 51-22-032          | Physics-I Lab           | 1       | 0           | 1         |                        | Physics-I      |
| 51-22-033          | Physics-II Lab          | 1       | 0           | 1         | Physics-I Lab          | Physics-II     |
| 51-22-008          | General Chemistry       | 3       | 3           | 0         |                        |                |
| 51-22-034          | General Chemistry Lab   | 1       | 0           | 1         | General Chemistry      |                |
| 12-72-020          | General Workshop        | 1       | 0           | 1         |                        |                |
| 12-72-021          | Industrial Drawing      | 2       | 1           | 1         |                        |                |
|                    | Total Credits           | 32      |             |           |                        |                |

| Materials Engineering Courses |                                               |         |             |           |                                         |              |
|-------------------------------|-----------------------------------------------|---------|-------------|-----------|-----------------------------------------|--------------|
| <b>Course Code</b>            | Course Title                                  | Credits | Theoretical | Practical | Pre-requisite                           | Simultaneous |
| 1272022                       | Fundamentals of Electrical Engineering        | 3       | 3           | 0         | Physics-II                              |              |
| 1272001                       | Fundamentals of Electrical Engineering Lab    | 1       | 0           | 1         | Fundamentals of Electrical Engineering  |              |
| 1471028                       | Statics                                       | 2       | 2           | 0         | Physics-I                               |              |
| 1272002                       | Mechanics of Materials                        | 2       | 2           | 0         | Statics                                 |              |
| 1272003                       | Crystallography & Lab                         | 3       | 2           | 1         | General Chemistry                       |              |
| 1272004                       | Transport Phenomena                           | 2       | 2           | 0         | Differential Equations                  |              |
| 1272027                       | Physical Chemistry of Materials               | 3       | 3           | 0         | Physics-I, Mathematics-II               |              |
| 1272028                       | Thermodynamics-I                              | 3       | 0           | 1         | Physical Chemistry of Materials         |              |
| 1272080                       | Physical Properties of Materials-I            | 3       | 3           | 0         | Crystallography & Lab                   |              |
| 1272005                       | Metallography Lab                             | 1       | 0           | 1         | Physical Properties of Materials-I      |              |
| 1272031                       | Mechanical Properties of Materials-I          | 3       | 0           | 0         | Mechanics of Materials                  |              |
| 1272032                       | Mechanical Properties of Materials-I Lab      | 1       | 0           | 1         | Mechanical Properties of Materials-I    |              |
| 1272006                       | Introduction to Materials Engineering         | 2       | 2           | 0         |                                         |              |
| 1272007                       | Principles of Casting & Solidification        | 2       | 2           | 0         | Physical Properties of Materials-I      |              |
| 1272008                       | Casting & Solidification Lab                  | 1       | 0           | 1         | Principles of Casting & Solidification  |              |
| 1272009                       | Physical Properties of Materials-II           | 2       | 2           | 0         | Physical Properties of Materials-I      |              |
| 1272010                       | Mechanical Properties of Materials-II         | 2       | 0           | 0         | Mechanical Properties of Materials-I    |              |
| 1272011                       | Principles of Polymer Eng.                    | 3       | 3           | 0         | (after passing 80 credits)              |              |
| 1272012                       | Composite Materials                           | 2       | 2           | 0         | (after passing 80 credits)              |              |
| 1272013                       | Principles of Surface Eng.                    | 2       | 2           | 0         | Corrosion and Conservation of Materials |              |
| 1272014                       | Materials Characterization and Analysis Tech. | 2       | 2           | 0         | (after passing 100 credits)             |              |
| 1272064                       | English for Materials Engineering             | 2       | 2           | 0         | English Language                        |              |
| 1272015                       | Principles of Ceramics Eng.                   | 3       | 3           | 0         | Physical Properties of Materials-II     |              |
| 1272016                       | Selection of Engineering Materials            | 2       | 2           | 0         | (after passing 100 credits)             |              |
| 1272017                       | Corrosion and Conservation of Materials       | 2       | 2           | 0         | Thermodynamics-I                        |              |
| 1272018                       | Principles of Materials Production            | 3       | 3           | 0         | Thermodynamics-I                        |              |
| 1272019                       | Physics of Solid State                        | 2       | 2           | 0         | Physics-II                              |              |
| 1272053                       | Nano Materials                                | 2       | 2           | 0         | (after passing 100 credits)             |              |
| 1272054                       | Bio Materials                                 | 2       | 2           | 0         | (after passing 100 credits)             |              |
| 1272050                       | Scientific Communication Techniques           | 1       | 1           | 0         | (after passing 100 credits)             |              |
| 1272052                       | Internship                                    | 1       | 0           | 1         | (after passing 100 credits)             |              |
| 1272051                       | Final Project                                 | 3       | 0           | 3         | Scientific Communication Techniques     |              |
|                               | Total Credits                                 | 68      |             |           |                                         |              |

| Ele                | ctive Courses (not complete)         |         |             |           |                                        |              |
|--------------------|--------------------------------------|---------|-------------|-----------|----------------------------------------|--------------|
| <b>Course Code</b> | Course Title                         | Credits | Theoretical | Practical | Pre-requisite                          | Simultaneous |
| 1272055            | Design of Die Casting                | 2       | 2           | 0         | Principles of Metals Forming           |              |
| 1272056            | Casting of Steel                     | 2       | 2           | 0         | Principles of Casting & Solidification |              |
| 1672056            | Fluid Mechanics                      | 2       | 2           | 0         | Transport Phenomena                    |              |
| 1272046            | Heat Treatments                      | 2       | 2           | 0         | Physical Properties of Materials-II    |              |
| 1272062            | Nondestructive Tests                 | 2       | 2           | 0         | (after passing 100 credits)            |              |
| 1272065            | Nonferrous Metal Alloys              | 2       | 2           | 0         | Physical Properties of Materials-II    |              |
| 1272059            | Principles of Metals Forming         | 3       | 3           | 0         | Mechanical Properties of Materials-I   |              |
| 1272077            | Powder Metallurgy                    | 3       | 3           | 0         | (after passing 100 credits)            |              |
| 1272078            | Manufacturing Processes of Materials | 2       | 2           | 0         | (after passing 100 credits)            |              |
|                    | Total Credits                        |         |             |           |                                        |              |

Total Credits (All Courses)142



#### **Computer Programming**

| Course Code | <b>Course Title</b>  | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|----------------------|---------|-------------|-----------|---------------|--------------|
| 51-11-049   | Computer Programming | 3       | 3           | 0         | Mathematics-I |              |

Explanation of main computer parts, the concept of software and hardware, algorithms design and an introduction to a structured computer programming language.

#### **Numerical Methods**

| Course Code | Course Title      | Credits | Theoretical | Practical | Pre-requisite        | Simultaneous |
|-------------|-------------------|---------|-------------|-----------|----------------------|--------------|
| 51-11-023   | Numerical Methods | 2       | 2           | 0         | Computer Programming |              |

This course is an introduction to Numerical Methods for solving mathematical problems that arise in Science and Engineering. The goal is to provide a basic understanding of the derivation, analysis and use of these numerical methods. The course includes:

Error Analysis; Numerical solution of Nonlinear Equations; Interpolation, Polynomial Approximation, Curve Fitting; Numerical Differentiation and Integration; Numerical Solution of Ordinary Differential Equations; Solutions of Systems of Equations.

# Physics-I Course Code Course Title Credits Theoretical Practical Pre-requisite Simultaneous 51-22-030 Physics-I 3 3 0 ----

To provide tools by which students can learn how to effectively read scientific material, identify fundamental concepts, reason through scientific questions, and solve quantitative problems. Physics-I is the first course of this set. This course covers the fundamental concepts in Classical Mechanics and Thermodynamics.

|             |              |         | Physics-I   | [         |               |              |
|-------------|--------------|---------|-------------|-----------|---------------|--------------|
|             |              |         |             |           |               |              |
| Course Code | Course Title | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
| 51-22-031   | Physics-II   | 3       | 3           | 0         | Physics-I     |              |

The main goal of fundamental courses in physics is to provide tools by which students can learn how to effectively read scientific material, identify fundamental concepts, reason through scientific questions, and solve quantitative problems. Physics-II is the second course of this set. This course covers the fundamental concepts in Electromagnetism and includes:

Electric Charge and Electric Field; Gauss's Law; Electric Potential; Capacitance and Dielectrics; Current, Resistance, and Electromotive Force; Direct-Current Circuits; Magnetic Field and Magnetic Forces; Sources of Magnetic Field; Electromagnetic Induction; Inductance; Alternating Current; Electromagnetic Waves.

| Physics-I Lab |              |         |             |           |               |              |  |
|---------------|--------------|---------|-------------|-----------|---------------|--------------|--|
|               |              |         |             |           |               |              |  |
|               |              |         |             |           |               |              |  |
| Course Code   | Course Title | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |  |



The main goal of this course is to introduce students to practical topics of Physics-I. Topics covered in this course:

Inclined planes experiments; Thermal conductivity of materials testing; Pendulum and Spring tests; Calculating the friction of different surfaces.

#### **Physics-II Lab**

| Course Code | Course Title   | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|----------------|---------|-------------|-----------|---------------|--------------|
| 51-22-033   | Physics-II Lab | 1       | 0           | 1         | Physics-I Lab | Physics-II   |

Examination of various materials thermal resistance; Examination of Gauss's Law; Magnetic force testing; Electrical currents testing.

#### **General Chemistry**

| Course Code | Course Title      | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|-------------------|---------|-------------|-----------|---------------|--------------|
| 51-22-008   | General Chemistry | 3       | 3           | 0         |               |              |

To teach students to think about the properties and behavior of the macroscopic world in terms of the structure and arrangement of the constituent molecules and atoms.

#### **General Chemistry Lab**

| Course Code | Course Title          | Credits | Theoretical | Practical | Pre-requisite     | Simultaneous |
|-------------|-----------------------|---------|-------------|-----------|-------------------|--------------|
| 51-22-034   | General Chemistry Lab | 1       | 0           | 1         | General Chemistry |              |

Chemistry is an experimental science. This means that, in general, chemical theories have followed observations made in the lab. contents covered in this course:

Measuring Density of Liquids and Solids: Predict the Salt Content of a Solution from Its Density; Separation and Identification of Food Dyes by Paper Chromatography; Qualitative Analysis Naming Inorganic Compounds; Transition Metal Complexes; Titrations of Acids and Bases; Buffered Solutions; Designing Solutions to Resist Changes in PH.

#### **General Workshop**

| Course Code | Course Title     | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|------------------|---------|-------------|-----------|---------------|--------------|
| 12-72-020   | General Workshop | 1       | 0           | 1         |               |              |

The main goal of this course is to introduce students to various machinery processes, including: Lathing, Milling, Drilling and ...

|             | Industrial Drawing  |         |             |           |               |              |  |  |  |
|-------------|---------------------|---------|-------------|-----------|---------------|--------------|--|--|--|
|             |                     |         |             |           |               |              |  |  |  |
| Course Code | <b>Course Title</b> | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |  |  |  |
| 12-72-021   | Industrial Drawing  | 2       | 1           | 1         |               |              |  |  |  |

Introduction to graphic language and design — means and techniques. The third and the first angle projections. Orthographic projection of points, lines, planes and solids. Principal and



auxiliary views. Views in a given direction. Sectional views. Intersection of lines, planes and solids. Development of surfaces. Drafting practices. Dimensioning, fits and tolerance.

#### **Fundamentals of Electrical Engineering**

| Course<br>Code | Course Title                                  | Credits | Theoretical | Practical | Pre-requisite                             | Simultaneous |
|----------------|-----------------------------------------------|---------|-------------|-----------|-------------------------------------------|--------------|
| 1272001        | Fundamentals of Electrical<br>Engineering Lab | 1       | 0           | 1         | Fundamentals of Electrical<br>Engineering |              |

Dependent sources; Voltage and current dividers; voltage and current sources; superposition; Linear and nonlinear circuit analysis.

#### Fundamentals of Electrical Eng. Lab

| Course Code | Course Title                           | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|----------------------------------------|---------|-------------|-----------|---------------|--------------|
| 1272022     | Fundamentals of Electrical Engineering | 3       | 3           | 0         | Physics-II    |              |

The main purpose of this course is to train the relevant works in Electronics Laboratory.

Teaching Single-Phase and Three-Phase Transformers and Their Shunt Connection, Relays, Fuses, High-Voltage and Low-Voltage Cables.

| Statics                                                                                                   |         |   |   |   |           |  |  |
|-----------------------------------------------------------------------------------------------------------|---------|---|---|---|-----------|--|--|
| Course Code     Course Title     Credits     Theoretical     Practical     Pre-requisite     Simultaneous |         |   |   |   |           |  |  |
| 1471028                                                                                                   | Statics | 2 | 2 | 0 | Physics-I |  |  |

This course presents analytical mechanics of particles, rigid bodies and mechanical structures when the system is in static equilibrium and includes:

Statics of Particles, Rigid Bodies: Equivalent Systems of Forces, Equilibrium of Rigid Bodies, Distributed Forces: Centroids and Centers of Gravity, Analysis of Structures, Forces in Beams and Cables, Friction, Distributed Forces: Moments of Inertia, Method of Virtual Work.

#### **Mechanics of Materials**

| <b>Course Code</b> | Course Title           | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|--------------------|------------------------|---------|-------------|-----------|---------------|--------------|
| 1272002            | Mechanics of Materials | 2       | 2           | 0         | Statics       |              |

Calculation of the deformation of various bodies under a variety of loads. Topics covered in this course: Stress; Torsion; Bending; Deflection; General stress-strain relations.

#### **Crystallography and Lab**

| Course Code | Course Title          | Credits | Theoretical | Practical | Pre-requisite     | Simultaneous |
|-------------|-----------------------|---------|-------------|-----------|-------------------|--------------|
| 1272003     | Crystallography & Lab | 3       | 2           | 1         | General Chemistry |              |

Bonding; Crystal Systems; Bravais Lattice; Elements of Crystal Symmetry; Reciprocal Lattice; Stereographic Projection; Elements of X-Ray Crystallography.



#### **Transport Phenomena**

| Course Code | <b>Course Title</b> | Credits | Theoretical | Practical | Pre-requisite          | Simultaneous |
|-------------|---------------------|---------|-------------|-----------|------------------------|--------------|
| 1272004     | Transport Phenomena | 2       | 2           | 0         | Differential Equations |              |

Transport Phenomena is the subject which deals with the movement of different physical quantities such as momentum, energy and mass in any chemical or mechanical process and combines the basic principles (conservation laws) and laws of various types of transport. Transport Phenomena can be classified into three types: Momentum transport, Energy transport, Mass transport.

#### **Physical Chemistry of Materials**

| Course Code | Course Title                    | Credits | Theoretical | Practical | Pre-requisite             | Simultaneous |
|-------------|---------------------------------|---------|-------------|-----------|---------------------------|--------------|
| 1272027     | Physical Chemistry of Materials | 3       | 3           | 0         | Physics-I, Mathematics-II |              |

Behavior of gases: equation of state of ideal and real gases, heat capacity of an ideal gas, mixtures of ideal gases. The first law of thermodynamics: intensive and extensive properties, internal energy and the first law of thermodynamics, chemical equilibrium, enthalpy of formation and the Hess law, heat of reactions. The second law of thermodynamics and statistical interpretation of entropy.

#### **Thermodynamics-I**

| Course Code | Course Title     | Credits | Theoretical | Practical | Pre-requisite                   | Simultaneous |
|-------------|------------------|---------|-------------|-----------|---------------------------------|--------------|
| 1272028     | Thermodynamics-I | 3       | 0           | 1         | Physical Chemistry of Materials |              |

Review of Thermodynamics laws and functions; Reactions involving pure condensed phases and gaseous phase; Phase equilibria in a one-component system; Solution thermodynamics; Free energy-composition and phase diagrams of binary systems; Electrochemical systems.

#### **Physical Properties of Materials-I**

| Course Code | <b>Course Title</b>                | Credits | Theoretical | Practical | Pre-requisite         | Simultaneous |
|-------------|------------------------------------|---------|-------------|-----------|-----------------------|--------------|
| 1272080     | Physical Properties of Materials-I | 3       | 3           | 0         | Crystallography & Lab |              |

Atomic structure of metals; Atomic binding; Metal structure; Crystal defects; Classification of alloys; Phase diagrams; Solid solution, eutectic, peritectic, monotectic, eutectoid, ...; iron-carbon diagram; TTT diagrams; precipitation hardening, ternary diagrams.

#### **Metallography Lab**

| Course Code | Course Title      | Credits | Theoretical | Practical | Pre-requisite                      | Simultaneous |
|-------------|-------------------|---------|-------------|-----------|------------------------------------|--------------|
| 1272005     | Metallography Lab | 1       | 0           | 1         | Physical Properties of Materials-I |              |

This course covers the experimental methods necessary to perform mechanical testing and metallographic analysis, and the relationships between the microstructure, processing and mechanical properties of materials.



#### **Mechanical Properties of Materials-I & II**

| Course<br>Code | Course Title                             | Credits | Theoretical | Practical | Pre-requisite                           | Simultaneous |
|----------------|------------------------------------------|---------|-------------|-----------|-----------------------------------------|--------------|
| 1272031        | Mechanical Properties of<br>Materials-I  | 3       | 0           | 0         | Mechanics of Materials                  |              |
| 1272010        | Mechanical Properties of<br>Materials-II | 2       | 0           | 0         | Mechanical Properties of<br>Materials-I |              |

Behavior of metals under simple and combined stress systems, Elements of theory of elasticity; Plastic deformation; Elements of theory of dislocations; strengthening mechanisms.

#### **Mechanical Properties of Materials-I Lab**

| Course<br>Code | Course Title                                | Credits | Theoretical | Practical | Pre-requisite                           | Simultaneous |
|----------------|---------------------------------------------|---------|-------------|-----------|-----------------------------------------|--------------|
| 1272032        | Mechanical Properties of<br>Materials-I Lab | 1       | 0           | 1         | Mechanical Properties of<br>Materials-I |              |

Practical introduction to methods of calculating materials strengths; Tension, Pressure, Bending, Metals Impact, Identantion Hardness, Fracture, Fatigue tests.

#### **Introduction to History of Materials Eng.**

| Course Code | Course Title                              | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|-------------------------------------------|---------|-------------|-----------|---------------|--------------|
| 1272006     | Introduction to History of Materials Eng. | 2       | 2           | 0         |               |              |

Introduction to Metallurgy and Materials Engineering history in Iran and around the world, and surveying the related engineering techniques; Ancient humans knowledge of minerals and also metals such as Gold, Copper and Silver; A brief summary describing Iron Age and tools and parts making, thus eventually resulting in industrial advances and development of Materials Engineering, as well as metals and industrial materials production techniques.

#### **Principles of Casting & Solidification**

| Course<br>Code | Course Title                              | Credits | Theoretical | Practical | Pre-requisite                         | Simultaneous |
|----------------|-------------------------------------------|---------|-------------|-----------|---------------------------------------|--------------|
| 1272007        | Principles of Casting &<br>Solidification | 2       | 2           | 0         | Physical Properties of<br>Materials-I |              |

Introduction to scientific fundamentals of solidification and its application in metals casting, and surveying the casting principles both scientifically and technically; Solidification applications in various scientific fields and an introduction to solidification of pure metals, mold and melt flow; Surveying the effective factors of Casting Fluidity and Risering Systems Design.

#### Casting & Solidification Lab

| Course<br>Code | Course Title                 | Credits | Theoretical | Practical | Pre-requisite                             | Simultaneous |
|----------------|------------------------------|---------|-------------|-----------|-------------------------------------------|--------------|
| 1272008        | Casting & Solidification Lab | 1       | 0           | 1         | Principles of Casting &<br>Solidification |              |



Experimental tests related to Casting and Solidification for practical introductory purposes; Testing the mold type effect on Aluminum alloys micro-structures; Testing the Nucleation factors effects on Aluminum alloys micro-structures.

#### **Physical Properties of Materials-II**

| Course<br>Code | Course Title                           | Credits | Theoretical | Practical | Pre-requisite                         | Simultaneous |
|----------------|----------------------------------------|---------|-------------|-----------|---------------------------------------|--------------|
| 1272009        | Physical Properties of<br>Materials-II | 2       | 2           | 0         | Physical Properties of<br>Materials-I |              |

Kinetics of phase transformation in the solid state; Diffusion; Nucleation; Annealing; Recrystallization grain growth; Diffusional transformation in steels; Martensitic transformation.

#### **Principles of Polymer Engineering**

| Course Code | Course Title               | Credits | Theoretical | Practical | Pre-requisite              | Simultaneous |
|-------------|----------------------------|---------|-------------|-----------|----------------------------|--------------|
| 1272011     | Principles of Polymer Eng. | 3       | 3           | 0         | (after passing 80 credits) |              |

Basic concepts of polymer science; Polymer melt rheology; Polymer processing; Rubber elasticity; Viscoelasticity; Yield and fracture; Additives; Polymers and their properties; Environmental considerations.

#### **Composite Materials**

| Course Code | Course Title        | Credits | Theoretical | Practical | Pre-requisite              | Simultaneous |
|-------------|---------------------|---------|-------------|-----------|----------------------------|--------------|
| 1272012     | Composite Materials | 2       | 2           | 0         | (after passing 80 credits) |              |

Introduction, definition, and classifications of composite materials. Introduction to processing methods, physical properties, and mechanical behavior of composite materials.

#### **Principles of Surface Engineering**

| Course<br>Code | Course Title                  | Credits | Theoretical | Practical | Pre-requisite                              | Simultaneous |
|----------------|-------------------------------|---------|-------------|-----------|--------------------------------------------|--------------|
| 1272013        | Principles of Surface<br>Eng. | 2       | 2           | 0         | Corrosion and Conservation of<br>Materials |              |

To develop expertise in advanced coating technologies with an emphasis on thermal spray, weld overlay and physical vapor deposition. Characterization methods are also included. Present models for the formation processes of coatings and how their physical properties evolve.

|                | Materials Characterization and Analysis Tech     |         |             |           |                             |              |  |  |  |  |
|----------------|--------------------------------------------------|---------|-------------|-----------|-----------------------------|--------------|--|--|--|--|
|                |                                                  |         |             |           |                             |              |  |  |  |  |
| Course<br>Code | Course Title                                     | Credits | Theoretical | Practical | Pre-requisite               | Simultaneous |  |  |  |  |
| 1272014        | Materials Characterization and Analysis<br>Tech. | 2       | 2           | 0         | (after passing 100 credits) |              |  |  |  |  |



Surveying modern methods of identifying metal and non-metal materials properties and structures, and introduction to the related devices and tests; A review over SEM and TEM optic, and linear and point analysis.

#### **English for Materials Engineering**

| Course Code | Course Title                      | Credits | Theoretical | Practical | Pre-requisite    | Simultaneous |
|-------------|-----------------------------------|---------|-------------|-----------|------------------|--------------|
| 1272064     | English for Materials Engineering | 2       | 2           | 0         | English Language |              |

Introduction to technical words and expressions within the field of Materials Engineering

#### **Principles of Ceramics Engineering**

| <b>Course Code</b> | <b>Course Title</b>         | Credits | Theoretical | Practical | Pre-requisite                       | Simultaneous |
|--------------------|-----------------------------|---------|-------------|-----------|-------------------------------------|--------------|
| 1272015            | Principles of Ceramics Eng. | 3       | 3           | 0         | Physical Properties of Materials-II |              |

This course provides an overview of the properties, manufacturing and design of ceramics, nanostructured ceramics, films and coatings. Three main topics are covered: Properties, manufacturing processes (bottom-up and top-down approaches) with emphasis on achieving the desired properties as well as the basis for design.

#### **Selection of Engineering Materials**

| Course Code | Course Title                       | Credits | Theoretical | Practical | Pre-requisite               | Simultaneous |
|-------------|------------------------------------|---------|-------------|-----------|-----------------------------|--------------|
| 1272016     | Selection of Engineering Materials | 2       | 2           | 0         | (after passing 100 credits) |              |

Structure and properties of engineering materials and their applications; Effect of strain, strain rate and temperature on mechanical properties of metals and alloys; Heat treatment of metals and alloys, and its influence on mechanical properties.

#### **Corrosion and Conservation of Materials**

| Course Code | Course Title                            | Credits | Theoretical | Practical | Pre-requisite    | Simultaneous |
|-------------|-----------------------------------------|---------|-------------|-----------|------------------|--------------|
| 1272017     | Corrosion and Conservation of Materials | 2       | 2           | 0         | Thermodynamics-I |              |

Definition; Classification; Anodic and cathodic reactions; Various types of corrosion; Corrosion tests; Materials selection; Cathodic and anodic protections; Inhibitors; Polarization; Electrochemical techniques.

#### **Principles of Materials Production**

| Course Code | Course Title                       | Credits | Theoretical | Practical | Pre-requisite    | Simultaneous |
|-------------|------------------------------------|---------|-------------|-----------|------------------|--------------|
| 1272018     | Principles of Materials Production | 3       | 3           | 0         | Thermodynamics-I |              |

Introduction to processes such as Casting, Machining and Hot Work Processes; Introduction to Powder Metallurgy in order to make materials; Introduction to types of Presses and Hammers



#### **Physics of Solid State**

| Course Code | <b>Course Title</b>    | Credits | Theoretical | Practical | Pre-requisite | Simultaneous |
|-------------|------------------------|---------|-------------|-----------|---------------|--------------|
| 1272019     | Physics of Solid State | 2       | 2           | 0         | Physics-II    |              |

This course aims at providing an introduction to some basic concepts in Solid State Physics. These include: Crystal structure; Lattice vibrations; Sommerfeld free-electron models; Electron energy bands; Fermi surface; Semi-classical model of electron dynamics; Electron transport in semiconductors; Superconductivity.

#### **Nano Materials**

| Course Code | Course Title   | Credits | Theoretical | Practical | Pre-requisite               | Simultaneous |
|-------------|----------------|---------|-------------|-----------|-----------------------------|--------------|
| 1272053     | Nano Materials | 2       | 2           | 0         | (after passing 100 credits) |              |

Fundamentals of bonding in solids: ionic, covalent and metallic bonding. Physical structure of matter: crystalline and non-crystalline solids, and the fundamentals of diffraction theory and practice. Crystal defects. Amorphous materials, including polymers and glasses. Electronic structure of solids. Optical, electronic, magnetic and dielectric properties of materials.

Introduction to inorganic nanostructured materials and Nano scale crystalline materials. Inorganic nanocomposites. Effects of scale on interfaces and properties. Natural and synthetic nanostructured materials. Theoretical and experimental interpretation of structure-properties relationship in nanostructured materials.

#### **Bio Materials**

| <b>Course Code</b> | Course Title  | Credits | Theoretical | Practical | Pre-requisite               | Simultaneous |
|--------------------|---------------|---------|-------------|-----------|-----------------------------|--------------|
| 1272054            | Bio Materials | 2       | 2           | 0         | (after passing 100 credits) |              |

Basic concepts in material science; Biological response to biomaterials; Biomaterial applications; Biomaterials in Engineering Design.

#### **Scientific Communication Skills**

| Course<br>Code | Course Title                           | Credits | Theoretical | Practical | Pre-requisite               | Simultaneous |
|----------------|----------------------------------------|---------|-------------|-----------|-----------------------------|--------------|
| 1272050        | Scientific Communication<br>Techniques | 1       | 1           | 0         | (after passing 100 credits) |              |

Developing the students' ability to clearly and effectively present scientific and technical contents in various fields; Gathering, Categorizing and Storing contents, and editing reports.

| Internship                                                                                                |            |   |   |   |                             |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|------------|---|---|---|-----------------------------|--|--|--|--|
| Course Code     Course Title     Credits     Theoretical     Practical     Pre-requisite     Simultaneous |            |   |   |   |                             |  |  |  |  |
| 1272052                                                                                                   | Internship | 1 | 0 | 1 | (after passing 100 credits) |  |  |  |  |

Practical introduction of studied courses through the university, in entirely industrial environments.



#### **Final Project**

| Course Code | Course Title  | Credits | Theoretical | Practical | Pre-requisite                       | Simultaneous |
|-------------|---------------|---------|-------------|-----------|-------------------------------------|--------------|
| 1272051     | Final Project | 3       | 0           | 3         | Scientific Communication Techniques |              |

Teaching students how to do researches, gather information, categorize data and present results based on data.

#### **Design of Die Casting**

| Course Code | Course Title          | Credits Theoretical |   | Practical | Pre-requisite                | Simultaneous |
|-------------|-----------------------|---------------------|---|-----------|------------------------------|--------------|
| 1272055     | Design of Die Casting | 2                   | 2 | 0         | Principles of Metals Forming |              |

Practical and theoretical introduction to design methods for various types of molds to shape materials; Introducing molds and cutting process; Identifying components of a mold, and common materials used for producing various components of molds in general.

#### **Casting of Steel**

| Course Code | <b>Course Title</b> | Credits | Theoretical | Practical | Pre-requisite                          | Simultaneous |
|-------------|---------------------|---------|-------------|-----------|----------------------------------------|--------------|
| 1272056     | Casting of Steel    | 2       | 2           | 0         | Principles of Casting & Solidification |              |

Casting processes – types and applications; Patterns – types and materials; Allowances; Molds and cores – materials, making, and testing; Casting techniques of cast iron, steels and nonferrous metals and alloys; Solidification; Design of casting, gating and risering; Casting inspection, defects and remedies.

#### **Heat Treatment**

| Course Code | Course Title    | Credits Theoretical |   | Practical | Pre-requisite                       | Simultaneous |
|-------------|-----------------|---------------------|---|-----------|-------------------------------------|--------------|
| 1272046     | Heat Treatments | 2                   | 2 | 0         | Physical Properties of Materials-II |              |

Iron-Carbon equilibrium diagram; Effects of alloying elements and cooling rate on microstructure; Pearlite, Bainite and Martensite transformations; TTT and CCT diagrams; homogenizing, annealing, normalizing, partial annealing, hardening and tempering; hardenability; case hardening; industrial problems.

#### Nondestructive Testing

| Course Code | Course Title         | Credits Theoretical |   | Practical | Pre-requisite               | Simultaneous |
|-------------|----------------------|---------------------|---|-----------|-----------------------------|--------------|
| 1272062     | Nondestructive Tests | 2                   | 2 | 0         | (after passing 100 credits) |              |

Discussion of various inspection techniques, e.g. Liquid-penetrant, magnetic-particles, Eddycurrent, radiographic (X-and Gama Ray), electron and neutron radiographic, ultrasonic, thermal, optical and acoustical holography.

#### **Non-Ferrous Metal Alloys**

| Course Code | Course Title            | Credits Theoretical |   | Practical | Pre-requisite                       | Simultaneous |
|-------------|-------------------------|---------------------|---|-----------|-------------------------------------|--------------|
| 1272065     | Nonferrous Metal Alloys | 2                   | 2 | 0         | Physical Properties of Materials-II |              |



Review of failure mechanisms and strengthening mechanisms; structure, properties, metallurgical processing and applications of non-ferrous alloys including light metals, copper, zinc and their alloys, low-melting, solders and bearing metals, precious metals, refractory metals and super alloys.

#### **Principles of Metals Forming**

| Course<br>Code | Course Title                    | Credits | Theoretical | Practical | Pre-requisite                           | Simultaneous |
|----------------|---------------------------------|---------|-------------|-----------|-----------------------------------------|--------------|
| 1272059        | Principles of Metals<br>Forming | 3       | 3           | 0         | Mechanical Properties of<br>Materials-I |              |

Stress and strain, principal stresses and yielding criteria, metalworking theory, effect of temperature and strain rate on workability, metalworking, processes: cold and hot rolling, drawing, extrusion, forging, sheet metal working.

#### **Powder Metallurgy**

| Course Code | Course Title      | Credits Theoretical |  | Practical | Pre-requisite               | Simultaneous |
|-------------|-------------------|---------------------|--|-----------|-----------------------------|--------------|
| 1272077     | Powder Metallurgy | der Metallurgy 3    |  | 0         | (after passing 100 credits) |              |

The course is a specialized course of the metallic materials area. The scope is to provide the necessary knowledge on the metallic part production by metal powders. It covers subjects such as metal powder characterization, metal powder production methods, powder metallurgy processing steps, post processing treatments.

#### **Manufacturing Processes of Materials**

| Course<br>Code | Course Title                            | Credits | Theoretical | Practical | Pre-requisite               | Simultaneous |
|----------------|-----------------------------------------|---------|-------------|-----------|-----------------------------|--------------|
| 1272078        | Manufacturing Processes of<br>Materials | 2       | 2           | 0         | (after passing 100 credits) |              |

Introduction to processes such as Casting, Machining and Hot Work Processes; Introduction to Powder Metallurgy in order to make materials; Introduction to types of Presses and Hammers

| otal | ME<br>Material                                                         | G<br>s Eng.      | uide<br>G<br>General          | Course                                   | Cou                                           | rse title            |                                |                       |                          | Ma                       | aterials                       | s Engir                                    | eering         | -B.S.                      |                                  |                                   | lester |
|------|------------------------------------------------------------------------|------------------|-------------------------------|------------------------------------------|-----------------------------------------------|----------------------|--------------------------------|-----------------------|--------------------------|--------------------------|--------------------------------|--------------------------------------------|----------------|----------------------------|----------------------------------|-----------------------------------|--------|
| JT   | S Science E<br>Elective Course                                         |                  | Credits                       | Course type<br>according to<br>the guide |                                               | Semester Chart       |                                |                       |                          |                          |                                |                                            |                |                            | Sem                              |                                   |        |
| 20   | Physic                                                                 | cs Lab-I         | Persian Language              |                                          | English I                                     | Language             | Com<br>Progra                  | puter<br>mming        | General C                | General Chemistry        |                                | sics-I                                     | Mathematics-I  |                            | General Workshop                 |                                   |        |
| 20   | 1                                                                      | S                | 3                             | G                                        | 3                                             | G                    | 3                              | S                     | 3                        | S                        | 3                              | S                                          | 3              | S                          | 1                                | ME                                |        |
| 18   | General Islamic Thoughts-<br>Chemistry Lab I                           |                  | Introdu<br>Materials H        | ction to<br>Engineering                  | Crystallo<br>La                               | graphy &<br>ab       | Stat                           | ics                   | Numerical<br>Methods     |                          | Physics-II                     |                                            | Mathematics-II |                            | 1                                |                                   |        |
| 10   | 1                                                                      | S                | 2                             | G                                        | 2                                             | ME                   | 3                              | ME                    | 2                        | ME                       | 2                              | S                                          | 3              | S                          | 3                                | S                                 |        |
| 18   | Physic                                                                 | s Lab-II         | Islamic T                     | l'houghts-<br>II                         | Physical I                                    | Education            | Mecha<br>Mate                  | nics of<br>erials     | Physi<br>Chemis<br>Mater | cal<br>try of<br>'ials   | Phy<br>Prope<br>Mate           | sical<br>rties of<br>rials-I               | Different      | tial Equations             | Fundame                          | ntals of Electrical<br>Eng.       | 3      |
|      | 1                                                                      | S                | 2                             | G                                        | 1                                             | G                    | 2                              | ME                    | 3                        | ME                       | 3                              | ME                                         | 3              | S                          | 3                                | ME                                |        |
| 18   | MechanicalPrinciples ofProperties ofCasting &Materials-ISolidification |                  | iples of<br>ing &<br>fication | Fundamentals of A<br>Electrical Eng. Lab |                                               | Analytical<br>Isl    | Analytical History of<br>Islam |                       | Metallography<br>Lab     |                          | eering<br>ematics              | Physical Properties of<br>Materials-II     |                | Thermodynamics-I           |                                  | 4                                 |        |
|      | 3                                                                      | ME               | 2                             | ME                                       | 1                                             | S                    | 2                              | G                     | 1                        | ME                       | 3                              | S                                          | 3              | ME                         | 3                                | ME                                |        |
| 16   | English for<br>Materials Eng. Islamic Revolution<br>of Iran            |                  | Revolution<br>Iran            | Corros<br>Conserv<br>Mate                | Corrosion and<br>Conservation of<br>Materials |                      | of Materials<br>action         | Castin<br>Solidificat | ıg &<br>ion Lab          | Mech<br>Prope<br>Materia | anical<br>rties of<br>ds-I Lab | Heat                                       | Freatments     | Mechani<br>M               | cal Properties of<br>aterials-II | S                                 |        |
|      | 2                                                                      | ME               | 2                             | G                                        | 2                                             | ME                   | 3                              | ME                    | 1                        | ME                       | 1                              | ME                                         | 2              | Е                          | 3                                | ME                                |        |
| 18   | Indu<br>Dra                                                            | ustrial<br>awing | Rite o<br>(Applieo            | of Life<br>d Ethics)                     | Physics of                                    | Solid State          | Select<br>Engineerin           | ion of<br>g Materials | Princip<br>Surface       | les of<br>Eng.           | Princi<br>Polym                | iples of<br>er Eng.                        | Principle      | es of Ceramics<br>Eng.     | Comp                             | osite Materials                   | 6      |
|      | 2                                                                      | ME               | 2                             | G                                        | 2                                             | ME                   | 2                              | ME                    | 2                        | ME                       | 3                              | ME                                         | 3              | ME                         | 2                                | ME                                |        |
| 18   | Tra<br>Phen                                                            | nsport<br>Iomena | Principle<br>For              | s of Metals<br>ming                      | The Holy Qu                                   | ıran Exegesis        | Powder N                       | <i>letallurgy</i>     | Nondesta<br>Tes          | ructive<br>ts            | Bio M                          | aterials                                   | Nano           | Materials                  | Materials<br>and A               | Characterization<br>nalysis Tech. | F      |
| 10   | 2                                                                      | ME               | 3                             | Е                                        | 2                                             | G                    | 3                              | Е                     | 2                        | ME                       | 2                              | ME                                         | 2              | ME                         | 2                                | ME                                |        |
| 16   | Final                                                                  | Project          | Exer                          | cise-I                                   | Family and<br>Know                            | Population<br>vledge | Inter                          | nship                 | Casting of               | Casting of Steel         |                                | Manufacturing<br>Processes of<br>Materials |                | Nonferrous Metal<br>Alloys |                                  | Design of Die Casting             |        |
|      | 3                                                                      | ME               | 1                             | G                                        | 2                                             | G                    | 2                              | ME                    | 2                        | Е                        | 2                              | Е                                          | 2              | E                          | 2                                | E                                 |        |